225 research outputs found

    Three-dimensional aspects of fluid flows in channels. II. Effects of Meniscus and Thin Film regimes on Viscous Fingers

    Get PDF
    We perform a three-dimensional study of steady state viscous fingers that develop in linear channels. By means of a three-dimensional Lattice-Boltzmann scheme that mimics the full macroscopic equations of motion of the fluid momentum and order parameter, we study the effect of the thickness of the channel in two cases. First, for total displacement of the fluids in the channel thickness direction, we find that the steady state finger is effectively two-dimensional and that previous two-dimensional results can be recovered by taking into account the effect of a curved meniscus across the channel thickness as a contribution to surface stresses. Secondly, when a thin film develops in the channel thickness direction, the finger narrows with increasing channel aspect ratio in agreement with experimental results. The effect of the thin film renders the problem three-dimensional and results deviate from the two-dimensional prediction.Comment: 9 pages, 10 figure

    A classical explanation of quantization

    Full text link
    In the context of our recently developed emergent quantum mechanics, and, in particular, based on an assumed sub-quantum thermodynamics, the necessity of energy quantization as originally postulated by Max Planck is explained by means of purely classical physics. Moreover, under the same premises, also the energy spectrum of the quantum mechanical harmonic oscillator is derived. Essentially, Planck's constant h is shown to be indicative of a particle's "zitterbewegung" and thus of a fundamental angular momentum. The latter is identified with quantum mechanical spin, a residue of which is thus present even in the non-relativistic Schroedinger theory.Comment: 20 pages; version accepted for publication in Foundations of Physic

    A systematic correlation between two-dimensional flow topology and the abstract statistics of turbulence

    Full text link
    Velocity differences in the direct enstrophy cascade of two-dimensional turbulence are correlated with the underlying flow topology. The statistics of the transverse and longitudinal velocity differences are found to be governed by different structures. The wings of the transverse distribution are dominated by strong vortex centers, whereas, the tails of the longitudinal differences are dominated by saddles. Viewed in the framework of earlier theoretical work this result suggests that the transfer of enstrophy to smaller scales is accomplished in regions of the flow dominated by saddles.Comment: 4 pages, 4 figure

    Velocity and Energy Profiles In Two- vs. Three-Dimensional Channels: Effects of Inverse vs. Direct Energy Cascade

    Get PDF
    In light of some recent experiments on quasi two-dimensional (2D) turbulent channel flow we provide here a model of the ideal case, for the sake of comparison. The ideal 2D channel flow differs from its 3D counterpart by having a second quadratic conserved variable in addition to the energy, and the latter has an inverse rather than a direct cascade. The resulting qualitative differences in profiles of velocity, V, and energy, K, as a function of the distance from the wall are highlighted and explained. The most glaring difference is that the 2D channel is much more energetic, with K in wall units increasing logarithmically with the Reynolds number \Ret instead of being \Ret-independent in 3D channels.Comment: Theoretical; 4 pages, 3 figures (8 plots); Submitted to Physical Review Letters on 16 February 200

    Tunable bimodal explorations of space from memory-driven deterministic dynamics

    Get PDF
    We present a wave-memory-driven system that exhibits intermittent switching between two propulsion modes in free space. The model is based on a pointlike particle emitting periodically cylindrical standing waves. Submitted to a force related to the local wave-field gradient, the particle is propelled, while the wave field stores positional information on the particle trajectory. For long memory, the linear motion is unstable and we observe erratic switches between two propulsive modes: linear motion and diffusive motion. We show that the bimodal propulsion and the stochastic aspect of the dynamics at long time are generated by a Shil'nikov chaos. The memory of the system controls the fraction of time spent in each phase. The resulting bimodal dynamics shows analogies with intermittent search strategies usually observed in living systems of much higher complexity. © 2019 American Physical Society

    Probing astrophysically important states in the ²⁶Mg nucleus to study neutron sources for the s process

    Get PDF
    Background: The ²²Ne(α,n) ²⁵Mg reaction is the dominant neutron source for the slow neutron capture process (s process) in massive stars, and contributes, together with C¹³(α,n)O¹⁶, to the production of neutrons for the s process in asymptotic giant branch (AGB) stars. However, the reaction is endothermic and competes directly with ²²Ne(α,γ)²⁶Mg radiative capture. The uncertainties for both reactions are large owing to the uncertainty in the level structure of ²⁶Mg near the α and neutron separation energies. These uncertainties affect the s-process nucleosynthesis calculations in theoretical stellar models. Purpose: Indirect studies in the past have been successful in determining the energies and the γ-ray and neutron widths of the Mg26 states in the energy region of interest. But, the high Coulomb barrier hinders a direct measurement of the resonance strengths, which are determined by the α widths for these states. The goal of the present experiments is to identify the critical resonance states and to precisely measure the α widths by α-transfer techniques. Methods: The α-inelastic scattering and α-transfer measurements were performed on a solid ²⁶Mg target and a ²²Ne gas target, respectively, using the Grand Raiden Spectrometer at the Research Center for Nuclear Physics in Osaka, Japan. The (α,α′) measurements were performed at 0.45°, 4.1°, 8.6°, and 11.1° and the (⁶Li,d) measurements at 0° and 10°. The scattered α particles and deuterons were detected by the focal plane detection system consisting of multiwire drift chambers and plastic scintillators. The focal plane energy calibration allowed the study of ²⁶Mg levels from Eₓ = 7.69–12.06 MeV in the (α,α′) measurement and Eₓ = 7.36–11.32 MeV in the (⁶Li,d) measurement. Results: Six levels (Eₓ = 10717, 10822, 10951, 11085, 11167, and 11317 keV) were observed above the α threshold in the region of interest (10.61–11.32 MeV). The α widths were calculated for these states from the experimental data. The results were used to determine the α-capture induced reaction rates. Conclusion: The energy range above the α threshold in ²⁶Mg was investigated using a high resolution spectrometer. A number of states were observed for the first time in α-scattering and α-transfer reactions. The excitation energies and spin-parities were determined. Good agreement is observed for previously known levels in ²⁶Mg. From the observed resonance levels the Eₓ = 10717 keV state has a negligible contribution to the α-induced reaction rates. The rates are dominated in both reaction channels by the resonance contributions of the states at Ex = 10951, 11167, and 11317 keV. The Eₓ = 11167 keV state has the most appreciable impact on the (α,γ) rate and therefore plays an important role in the prediction of the neutron production in s-process environments

    Viscous shocks in Hele-Shaw flow and Stokes phenomena of the Painleve I transcendent

    Full text link
    In Hele-Shaw flows at vanishing surface tension, the boundary of a viscous fluid develops cusp-like singularities. In recent papers [1, 2] we have showed that singularities trigger viscous shocks propagating through the viscous fluid. Here we show that the weak solution of the Hele-Shaw problem describing viscous shocks is equivalent to a semiclassical approximation of a special real solution of the Painleve I equation. We argue that the Painleve I equation provides an integrable deformation of the Hele-Shaw problem which describes flow passing through singularities. In this interpretation shocks appear as Stokes level-lines of the Painleve linear problem.Comment: A more detailed derivation is include

    Electroconvection in a Suspended Fluid Film: A Linear Stability Analysis

    Full text link
    A suspended fluid film with two free surfaces convects when a sufficiently large voltage is applied across it. We present a linear stability analysis for this system. The forces driving convection are due to the interaction of the applied electric field with space charge which develops near the free surfaces. Our analysis is similar to that for the two-dimensional B\'enard problem, but with important differences due to coupling between the charge distribution and the field. We find the neutral stability boundary of a dimensionless control parameter R{\cal R} as a function of the dimensionless wave number κ{\kappa}. R{\cal R}, which is proportional to the square of the applied voltage, is analogous to the Rayleigh number. The critical values Rc{{\cal R}_c} and κc{\kappa_c} are found from the minimum of the stability boundary, and its curvature at the minimum gives the correlation length ξ0{\xi_0}. The characteristic time scale τ0{\tau_0}, which depends on a second dimensionless parameter P{\cal P}, analogous to the Prandtl number, is determined from the linear growth rate near onset. ξ0{\xi_0} and τ0{\tau_0} are coefficients in the Ginzburg-Landau amplitude equation which describes the flow pattern near onset in this system. We compare our results to recent experiments.Comment: 36 pages, 7 included eps figures, submitted to Phys Rev E. For more info, see http://mobydick.physics.utoronto.ca
    corecore